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ABSTRACT

The proliferation of digital information technologies and related infrastructure has given rise to 

novel ways of capturing, storing and analyzing data. In this paper, we describe the research and 

development of an information system called Interactive Knowledge Networks for Engineering Edu-

cation Research (iKNEER). This system utilizes a framework that combines large-scale data mining 

techniques, social network mapping algorithms, and time-series analysis, to provide a mechanism 

for analyzing and understanding data about the engineering education community. We provide a 

detailed description of the algorithms, workflows, and the technical architecture we use to make 

sense of publications, conference proceedings, funding information, and a range of products derived 

from research in EER (also known as knowledge products). Finally, we demonstrate one possible 

application of iKNEER by applying topic modeling techniques to a subset of the data to identify 

the emergence and growth of research topics within the community thereby illustrating the unique 

epistemic value of this knowledge platform. The system can be found at http://www.ikneer.org. 

http://www.ikneer.org


2 SUMMER 2014

ADVANCES IN ENGINEERING EDUCATION

Tools for large-scale data analytic examination of relational and  

epistemic networks in engineering education

Key Words: Interactive knowledge platform, academic collaboration, research trends, big data

INTRODUCTION

In today’s globally competitive economy, success is increasingly driven by the ability to act on 

knowledge and intellectual capital. Academic communities that have developed a corpus of knowl-

edge artifacts over decades or sometimes centuries of research are uniquely positioned to capitalize 

on their expansive knowledge bases. Yet, this process is fraught with difficulties. To be innovative, 

an organization [or community] has to be adept at exploiting existing knowledge as well as explor-

ing new ways of producing knowledge [1]. To do so, a community must have a holistic, deep, and 

accessible understanding of what it knows. 

Engineering education has recently undergone a resurgence and reorientation that mirrors grow-

ing recognition of the challenges faced by both engineering educators and learners in the 21st cen-

tury. A new field of Engineering Education Research (EER) has emerged, in part coalescing around 

theories of how people learn in the domain of engineering. Yet as the EER community expands, it is 

becoming increasingly difficult to develop and sustain community memory. This has the potential 

to significantly hinder progress as the inability of a field, discipline, or more generally – a problem 

space – to recognize what it knows increases the risk that isolated researchers and groups will tackle 

similar problems using relatively similar approaches. Lack of easy access to community knowledge 

also hinders the acculturation of newcomers into the community. The expansion of engineering 

education over the past decade has led the field to a critical juncture that demands new tools and 

methods to enable the community to expand and build on prior work. In this paper, we address this 

challenge by describing the development and deployment of an interactive knowledge platform – 

entitled Interactive Knowledge Networks for Engineering Education Research (iKNEER). This system 

is designed with the goal to help members of this growing community explore the current state 

of knowledge within EER, identify future directions for research, and find collaborative partners.

The engineering education community has a vision of improving and innovating how engineers 

are trained and prepared to make them more competitive in the global economy. To pursue this 

goal the community has coalesced around several initiatives such as those that have produced The 

Engineer of 2020 [2] and the draft report on Engineering Education for the Global Economy [3]. 

The National Science Board report entitled Moving Forward to Improve Engineering Education [4] 

explicitly points to the need for “expanding research and data collection related to engineering 

education”. Inherent in this call is the need to expand the rate and volume of data collected and 

analyzed in EER. Yet the question remains: once such large scales of data are collected, what sorts 
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of analytics and informatics can be applied to them to derive actionable knowledge? This actionable 

knowledge could take the form of new policies, organizational structures, student learning practices 

and others that may have a direct impact on not only how we conduct research in EER, but also 

how it impacts student learning. Prior efforts and reports provide us with a blueprint of where the 

community needs to head, especially in terms of supporting desired outcomes for engineers who 

are prepared to practice effectively in the 21st century. Yet we do not have specific pathways and 

broad knowledge of how engineering education research can help transform engineering teaching 

and learning to cultivate engineers of the future. This challenge is further compounded when one 

considers the international and highly interdisciplinary state of this problem space, with research-

ers in many different countries and regions perhaps undertaking similar research on engineering 

education and professional practice. 

Extant literature in engineering education [5] and numerous other disciplines including learning 

sciences [6] and cyberinfrastructure [7, 8] have called for radically rethinking education research 

to include large scale data and collaborations. Throughout this paper, we use the term large-scale 

data to indicate data from a variety of contexts – research, learning, policy, and funding – that is 

growing in volume at high velocity. For example, there are new research papers appearing every 

day; each time a student interacts with learning materials within learning environments it produces 

archival data; each time a funding decision occurs at any funding agency (such as the US National 

Science Foundation) this produces data. By large data or big data – we mean an accumulation of 

all of this data that happens daily, growing in volume, and most importantly capable of expanding 

at very high speeds. 

One important question for growing fields such as engineering education is: How do we know 

when large-scale research collaborations are happening? Also, how do we know that research 

utilizing large datasets attracts a large number of researchers to utilize these datasets? Can we 

take a data-driven approach to clearly point out trends in research productivity and collaboration? 

Information retrieval research (e.g., search engines) often helps address such problems by improv-

ing the aggregation of data and focusing on what any given document is about (i.e., word-level 

content analysis). However, for scientific communication, it is equally important to know who writes 

the document and how the document is positioned in the process of knowledge emergence as this 

provides credibility and grounding for the research outcomes. Improving access to such information 

demands different types of analytic tools.

Traditionally, analyzing large-scale academic data has been the domain of a few computer sci-

entists and engineers. It requires computational techniques to acquire and manage data, analyze 

large-scale networks, and identify trends and patterns. To allow a broader range of researchers, 

educators, and other stakeholders in the EER community to drive the exploration of the problem 
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space, the data gateway must not only handle the underlying computational components, but 

also provide insightful representations and a user-friendly interface. In this paper, we describe an 

infrastructure and associated problems of infrastructure construction that can eventually allow us 

to characterize and provide the type of insights required by the community. To achieve this goal 

we utilize large-scale data from a variety of knowledge products. By knowledge products we mean 

publications in journals and conferences in engineering education, National Science Foundation 

(NSF) award information, articles published by international organizations, reports on engineering 

education, and a range of other such academic artifacts.

The purpose of this paper is to describe a system called Interactive Knowledge Networks for 

Engineering Education Research (iKNEER) – a prototype of a knowledge mining and visualization 

gateway designed primarily for the engineering education research community. As of April 15, 2013, 

iKNEER includes a total of 164,213 documents from 22 different publications including Journal of 

Engineering Education, International Journal of Engineering Education, Frontiers in Education, ASEE 

conference proceedings, IEEE Transactions on Education, and the US National Science Foundation. 

Overall, our system covers almost 50 years of data with the oldest document dating back to 1963. 

The document repository is continuously expanding to reach broader inclusion of publication sources 

and longer coverage. Even as we increase coverage, we are also particularly careful to avoid los-

ing focus with respect to the data elements we provide. There are multiple perspectives on which 

academic outlets count within the engineering education space. Our strategy allows members of 

the community to recommend specific knowledge products we need to archive. We track these 

requests and if there are multiple requests for archiving a specific data source – our system then 

crawls the metadata related to that source. Human experts monitor this process, thereby keeping 

it focused on engineering education. Out of the whole dataset, we have developed the capability 

to understand the scientific profile of 137,039 authors and 262,670 keywords (including 197,216 

keyphrases extracted from document full text automatically).

CURRENT APPROACHES TO CHARACTERIZING A RESEARCH DOMAIN USING  

DATA AND VISUALIZATION

Analyzing academic publications to characterize a research domain, usually involves a manual, 

in-depth analysis of relevant papers. The aim is to synthesize literature related to popular research 

topics, recognize patterns and trends, and chart a literature roadmap for future development. In 

engineering education, researchers have produced review papers that cover a variety of research 

topics. The fundamental problem with traditional review papers is that they are extremely time and 
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resource intensive to produce. Therefore, it is difficult to conduct these studies on an on-going basis. 

For example, some researchers attempt to identify main research areas in engineering education 

based on a review of a relative broad range of journal and conference proceedings papers. By con-

ducting a keyword analysis of Journal of Engineering Education (JEE) papers from 1993 to 2002, 

Wankat [9, 10] identified that major research topics such as teaching, design, computer, ABET, and 

assessment became increasingly popular during the second half of the last decade. Chen et al. [11] 

also reviewed JEE papers to recognize core topics in engineering education wherein the results were 

based on a social tagging activity. Jesiek et al. [12, 13] performed a review of international confer-

ence papers in engineering education and revealed different patterns in topics and collaboration 

within and across nations. Instead of studying engineering education as a whole to recognize topi-

cal trends, some projects have focused on specific research areas. Madhavan et al. [14] provided a 

synthesis of cyberlearning environments in engineering education based on a qualitative analysis of 

JEE articles from years 2000 to 2009. Other similar studies examining specific topics in engineering 

education include Prince [15] who evaluated the effectiveness of active learning by synthesizing 

relevant literature and Dutson et al. [16] who investigated the topic of teaching engineering design. 

Review papers help other researchers quickly develop comprehensive and insightful understanding 

of a discipline or a research topic. However, the effort behind writing a review paper is extremely 

high. While such studies are valuable and provide rich insights, they do not provide mechanisms to 

capture the zeitgeist of the research as it occurs – primarily because it takes significant time and 

effort to manually capture topical and other trends. Just the number and frequency of publication 

of significant review papers that include the type of analyses discussed above is evidence that 

the process of collecting enough papers and then subsequently performing in-depth analyses is a 

difficult and resource intensive process. Further, it is infeasible to review every topic on a regular 

basis based on all the relevant literature. Instead, authors of review papers usually selectively cover 

a small set of top publications [17]. 

As performing trending and high-level topical analyses manually is too costly, many scholars 

seek a more automatic solution to analyzing academic articles. Frameworks and tools have been 

developed to identify significant trends and patterns based on publication metadata such as titles, 

authors, abstracts, keywords, affiliations, citations, and other attributes. For instance, some studies 

identified prominent scholars in a specific area [18] and characterized main research foci and trends 

[19, 20] by performing co-citation analyses. Based on statistical analysis of keywords/keyphrases of 

each paper, researchers revealed trends and patterns that chart the emergence and development 

of a field. Some scholars [21] working on topic modeling studied author-topic models for academic 

publications to link a research topic to its contributing authors and produce author profiles based on 

authors’ academic production. Other researchers have tracked the longitudinal evolution of topics 



6 SUMMER 2014

ADVANCES IN ENGINEERING EDUCATION

Tools for large-scale data analytic examination of relational and  

epistemic networks in engineering education

in a specific domain [22] and the development of scholarly collaboration networks among authors 

[23]. All these studies uncovered trends and patterns based on a statistical analysis of large-scale 

bibliographic data. With iKNEER, our goal is to provide the EER community with an infrastructure 

that makes such studies easy to undertake repeatedly and on-demand.

To provide more interactions and meaningful representations to any research community, vi-

sual analytics experts have implemented tools to help understand individual academic articles as 

well as the entire field. Uren et al. [24] developed a visual tool named ClaiMapper to allow users 

to sketch a map of arguments to summarize main ideas in individual papers. They defined a tax-

onomy of rhetorical link types, which were denoted by edges on the argument map. Strobelt et 

al. [25] presented a technique called Document Cards to display a brief summary of any article in 

a conference proceedings. The document summary was automatically generated with key terms 

and figures and could direct readers to the original context in the full text upon readers’ request. 

Besides efforts on visualizing individual articles, researchers have proposed information visualiza-

tions to demonstrate paradigm shifts, topical trends, and author-topic relationships. McCain [18] 

performed author co-citation analysis on publications in the ISI databases and represented domains 

and top authors as clusters in a network. Similarly, White et al. [26] analyzed the co-citation rela-

tionships based on journal papers in information science and clustered authors by their research 

specialties. He et al. [27] also visualized clusters of authors based on co-citation relationships but 

developed an additional web-based search engine for querying the citations database. Chen et al. 

[19] proposed a 3-D visualization tool for exploring the semantic relationships between articles in 

the ACM Hypertext conference. The software SCIMap [28] also aimed to generate co-citation maps 

and ontology based on scientific publications in the natural sciences [29]. Another popular visual 

analytics tool for research domain analysis called VxInsight [30] used a terrain view to demonstrate 

the popularity of topics and the commonality between them. A recent study by Bergström et al. 

[31] combined existing visualization techniques such as tree map view, force-directed network, and 

circular network to develop an intelligence system, PaperCube, to facilitate researchers’ interaction 

with a digital library and exploration of different dimensions of bibliographic metadata. Börner 

et al. [32] summarized present knowledge domain visualizations and proposed guidelines for ap-

propriate use of these techniques to analyze bibliographic data in different contexts. These visual-

ization tools address various aspects of bibliographic data and offer users interactive interfaces to 

navigate any problem space. However, none of the above approaches has been applied to provide 

an insightful and comprehensive overview of engineering education research. More importantly, 

the methods, tools, and algorithms identified above require significant expertise in data mining to 

use on a regular basis. They represent a set of approaches that need to be integrated into a single 

unifying analytical framework and workflow. iKNEER is designed for non-experts in data mining 
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and visual analytics. It brings together a variety of algorithmic techniques into a single problem 

space – namely, EER. 

METHODOLOGY

Figure 1 illustrates the architecture and workflow of iKNEER. As a data-intensive gateway, iKNEER 

first (1) collects knowledge products such as academic articles and grant proposals from a vari-

ety of sources periodically using focused crawling. As a cyber-tool for researchers to explore the 

field, the web-based interface of iKNEER (2) processes user operations on the website, which then  

(3) triggers the underlying computational components to (4) compute the output. The result is then 

(5) represented in a visual form. In this section, we present our design and implementation of iKNEER 

by elaborating on the three major components: data management, computation, and representation.

Data acquisition and management

iKNEER’s ultimate goal is to archive every knowledge product in engineering education. To achieve 

this goal, the data server acquires metadata and full texts (when feasible) of academic articles 

relevant to engineering education from online publication data sources such as IEEE Xplore, Web 

of Science, and EBSCO. A full listing of all archived data is provided in Table 1. Our data acquisition 

process focuses on data sources that have open metadata access. The list of relevant publications is 

derived from the feedback from a large number of users in the community and is constantly expand-

ing to include a broader literature base. As explained earlier, even though the number of products 

we archive is increasing, the active involvement and curation of data sources by humans allows the 

system to stay focused on engineering education. 

To keep our database constantly updated, we automated the acquisition process by detect-

ing updates from monitored sites periodically. Once new issues and volumes are published, the 

detectors will inform iKNEER’s crawlers to download the relevant data. Occasionally, we import 

Figure 1. Architecture of iKNEER.
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data manually from optical media when target data are not available on the Internet. To overcome 

issues with different data formats owned by different publishers, we have developed a robust set 

of data adapters to transform publication metadata into a unified format before including them in 

our data archives. The need for developing new adapters for new data sources sometimes leads to 

a minor gap between data collected and data accessible by the public. This is however unavoid-

able as we need to ensure data integrity and also broad inclusion representative of engineering 

education research. Table 1 shows a partial list of the knowledge products currently accessible via 

iKNEER. (Note that publications may be missing in certain years when no articles were published.) 

Other resources that have been collected by iKNEER but yet to be published are: Australasian As-

sociation for Engineering Education, Education for Chemical Engineers, International Conference 

on Engineering Education, International Conference on Engineering Education Research, SEFI, and 

World Conference on Continuing Engineering Education. We are currently working on making these 

new resources accessible on iKNEER.

iKNEER collects a significant amount of funding (awards) information from the National Sci-

ence Foundation public database. In the long run, one of the potential applications of iKNEER is to 

 understand the impact of federal funding on engineering education. In order to gain a full picture, 

Knowledge Product
Number of 
Documents Available Years

Advances in Engineering Education 62 2007–2012

American Society for Engineering Education (annual conference) 17,938 1996–2012

Australasian Journal of Engineering Education 50 2000–2009

Computer Applications in Engineering Education 505 1997–2011

Engineering Education 2,292 1969–1991

European Journal of Engineering Education 1,953 1975–2011

Frontiers in Education (conference) 7,082 1982–2010

Global Journal of Engineering Education 322 2000–2007

IEEE Transactions on Education 3,331 1963–2011

International Journal of Continuing Engineering Education and Life-Long Learning 185 2004–2009

International Journal of Electrical Engineering Education 1,491 1969–2010

International Journal of Engineering Education 1,563 1997–2011

Journal of Chemical Education 1,823 2005–2008

Journal of Engineering Education 541 2000–2011

Journal of Professional Issues in Engineering Education and Practice 842 1994–2011

National Science Foundation (Awards information) 123,054 2001–2011

Table 1. Partial set of knowledge products currently accessible via iKNEER.
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we archive and provide secondary mining capabilities for all of the NSF awards. While iKNEER fo-

cuses primarily on engineering education, we utilize the entire body of awards information to cre-

ate scientific profiles for researchers. We provide a fuller description of how individual researcher 

profiles are constructed below. Additionally, funding information is also used as one of the markers 

for helping disambiguate researcher names and institutions.

Once data are systematically collected in our system, there are significant issues of optimizatoin 

and assuring data quality that need to be addressd. The former aims to reduce query-processing 

time, whereas the latter ensures that publication information is accurately represented. Author 

name and product title ambiguity is the biggest barrier to establishing data quality at this stage 

of the process. Meaning, publishers follow their own naming conventions for author names such 

as abbreviating first names and ignoring middle initials. As a result, it is common that one author 

has published multiple papers under two or more versions of their names. Author name ambigu-

ity produces erroneous results when computing how many authors are working on a given topic, 

collaboration models, and other metrics such as publication counts. To overcome this issue, we 

designed a recommendation-based system to allow users to disambiguate duplicate items used 

primarily when the automatic processes are not able to resolve the ambiguity. 

Figure 2 demonstrates how iKNEER creates multiple groups of author names that are detected as 

potential duplicates. Based on the recommendation list and the corresponding authors’  publication 

Figure 2. The author name disambiguation system that aids in grouping and removing 

duplicates.
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activities, members of the iKNEER design team determine whether to group the seemingly similar 

author names together or not. In Figure 2, the author names compared within the group share the 

same co-author, which is a clear indicator that these two names refer to the same author. Therefore, 

these two names are marked as the same. We are adding grants information from NSF to further 

strengthen this disambiguation process. Our name disambiguation system supports rollback op-

erations so that mistakenly grouped name duplicates will not result in permanent changes in the 

database. This process is completely transparent to the end users, who never have to perform this 

process or interact with the disambiguation system directly. However, iKNEER provides mechanisms 

for end users to identify issues with the automatic disambiguation system and report them.

Data-centered computational components

Based on the data collected, the computational server supports the presentation layer (or user in-

terface for end users) by running appropriate algorithms. To support composite searches with multiple 

constraints such as author and publication time, we developed a sophisticated search and compilation 

methodology that is tuned to provide short response times in the order of microseconds (whereas 

traditionally these results took days to compile). To produce co-author networks, iKNEER computes 

and caches results from social network analysis based on the co-authorship information found in the 

entire dataset. To provide insights on how a topic evolves, we implemented a computational compo-

nent that aggregates relevant knowledge products and groups them by time of publication.

To produce concise views related to any individual knowledge product we provide end users with 

a collection of weighted keyphrases (which go beyond just singular keywords to retain context). We 

utilized existing author-supplied keywords and also designed an automatic smart tagging system. 

Describing an academic article with a list of keywords has been commonly used and often been 

mandated by publishers to give readers a general sense of what an article is about. However, some 

publishers do not impose this requirement and leave many articles without keywords. In a system 

like iKNEER, manually assigning keywords to documents is infeasible because of the time cost and 

volume of data. Therefore, we created a smart tagging system that generates keywords based on 

the frequency of word occurrence in the full text of a given document. We maintain a stop word list 

to filter common words such as the, of, is, and a so that they will not be identified as keywords. For 

example, the top four keywords generated from a JEE paper [33] are <mentor, 74>, <experience, 

63>, <gender, 57>, and <cooperative, 42>, where values indicate the number of word occurrence 

in the document. We continue to investigate other methods to identify appropriate tags for docu-

ments and other knowledge products.

To enable better navigation by topics, we utilize a rule to determine the likelihood of a document 

belonging to a certain category. Depending on word occurrences in the title, abstract, and keywords, 
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a document is characterized as belonging to one or more topics. We define a simple taxonomy and 

ontology of engineering education research so that inter-topic relationships can emerge automati-

cally. For example, workplace diversity should be contained in workplace and if a user searches for 

workplace, articles on all sub-topics will be returned. Relationships between documents are passed 

to an algorithm called WordBridge for producing a visualization showing the commonality between 

the two, as outlined in Kim et al. [34]. Figure 3 provides an overview of the process. We discuss the 

types of visuals that result later in the paper.

To open our database to other researchers in EER who may want direct access to the data unfil-

tered by our interface, iKNEER provides a set of remote procedure application interfaces formatted 

in JavaScript Object Notation – Remote Procedure Call (JSON-RPC). For example, a developer can 

pass the JSON packet in Table 2 to request information about the first ten papers with the keyword 

Figure 3. The decision tree for categorizing documents by topic and visualizing between-

document relationships.

{“params”:{“tag”:[“assessment”], “publication”:“Frontiers in Education Conference”,  
“publicationYear”:{“beginYear”:2000, “endYear”:2009}, “output”:“PaperInfo”, “range”:{“beginIndex”:0,  
“endIndex”:9}}, “method”:“advancedQuery”, “id”:8818}

Table 2. A JSON request for getting the first ten papers related to assessment published 

in FIE.
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assessment published in FIE. Other procedure calls include computing co-author networks, keyword 

trends, and papers written by a given author.

Visualizations and user interface

We discussed the design and implementations of data management and computational compo-

nents above, which involve computational techniques such as data mining, social network analysis, 

and time-series analysis. iKNEER, however, is designed for a non-expert in data mining and visual 

analytics. To this end, we created a web-based user interface for users to explore the data in a vi-

sual and intuitive manner. No application or plug-in installation is required to use iKNEER. The user 

interface primarily provides the following capabilities:

Full text phrase search (example in Figure 4)

One of the features that we have developed and implemented in iKNEER is the capability to 

perform full text search across our entire archive. Users can search any word, phrase, author name, 

institution, NSF program name, and specify other constraints such as time range. Search is intrinsically 

tied to all other aspects of the iKNEER site. We treat every data element as searchable and assume 

that every search result eventually maps to other larger more powerful data points. iKNEER then 

shows the most relevant publications along with an academic profile of the total number of academic 

papers, grant proposals, authors, PIs, and funding amount associated with the user input. These ele-

ments on the search result page are interactive to allow further exploration. Full text search requires 

us to process and return a significant amount of data at any given time. To perform this  effectively, 

Figure 4. Full text search of “active learning” in iKNEER. Documents that mention “active 

learning” in title or full text are returned, along with a statistical overview of total number of 

publications, authors, and funding amount associated with this term.
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we have researched and developed a testbed using an open-source indexing system called SOLR 

(Apache SOLR. Available online at http://lucene.apache.org/solr/) - which is a web extension to a 

high performance, full-text search engine library called Lucene (Apache Lucene. Available online 

at http://lucene.apache.org/java/docs/index.html). Our SOLR-based implementation indexes all 

archived documents, takes any text as input, and returns a list of documents that mention the given 

search text. Figure 4 shows the search result within iKNEER using the phrase “active learning”. The 

left window lists all academic papers and grant proposals related to active learning with the most 

relevant ones on top. The statistical overview shows the academic and financial profile of active 

learning. All these results are computed and returned in about 0.35 seconds.

By clicking on the search results page, users can navigate to see the full profile of a scholar, a 

topic, or an NSF program. Figure 5 shows a scholar’s academic profile, which includes his overall 

academic performance (measured by number of publications and funds), major research interests, 

collaborators, NSF program officers who approved the awards, and the researcher’s publications. 

The profile page takes into consideration name disambiguation, incorporates keyphrases extracted 

from full text, and presents the large dataset in a concise way. Again, all elements on the page are 

interactive such that clicking on a research topic, a node in the collaboration network, or a program 

officer’s name in the table will open a new profile page for the selected entity.

Visualizing relationships within iKNEER

One of the more powerful aspects of iKNEER is its ability to visualize relationships between au-

thors and co-authors of papers and conference proceedings. We generate these relationship maps 

interactively and in real-time based on user interactions. Users generally get the visuals in a matter 

of seconds – a process that used to take several hours. Figure 6 provides a simple collaboration 

network for one scholar. Here the brightness of lines indicates the number of papers produced 

between the scholar and his collaborators.

While iKNEER can easily handle relationships between people (authors), we also apply the same 

approaches to visualize thematic areas, keywords, journals, and other entities. For example, we could 

pose the question “who are the top 50 researchers working in the problem space ‘assessment’ and 

what is the collaboration network between those researchers?” Figure 7(a) provides a simple answer to 

the question quickly and accurately, whereas Figure 7(b) includes all scholars working in ‘assessment’.

While we have made good progress on the algorithmic aspect of iKNEER, we still need to ensure 

that we have complete data coverage. We are examining techniques to scale our work to include a 

larger set of data. These types of maps can also be generated based on timescales. iKNEER already 

has this feature built into it. For example, any user can generate a time-scaled version of the collabora-

tion networks that allows us to understand how a person’s collaboration network evolves over time.
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Figure 5. Academic profile of a scholar in iKNEER.

iKNEER’s advanced trend tracking capability

In the previous sections, we highlighted some of iKNEER’s search and network mapping capabili-

ties. In this section, we examine some of iKNEER’s advanced trend mapping capabilities. iKNEER 

includes tools that allow users to understand how various concepts, keywords, and tags evolve over 
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Figure 6. Collaboration Network (Circular) for Karl Smith generated real-time by iKNEER. 

Brightness of lines between nodes (authors) indicates number of papers between the authors.

Figure 7. Collaboration network for the people working in the problem space “assessment”: 

(a) Top 50 scholars in a circular view and (b) All scholars in a force-directed layout.
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time. Figure 8 shows how the use of the keyword “engineering education” has evolved over a period 

of time. We allow users to plot these either on a direct frequency scale or a logarithmic scale. We 

use time-series analysis as an intrinsic part of these analyses. Any user can create these trending 

graphs based on a simple search for a topic of interest.

ENABLING UNIQUE INSIGHTS

While iKNEER acts as a unique knowledge mining platform for the engineering education com-

munity, it also is being used to generate very unique insights about the field of engineering edu-

cation research. This is indeed one of the main goals of iKNEER. Figure 9 provides a visualization 

of the largest network within the field of engineering education research based only on published 

work (journals and conference proceedings). The largest network in the field of engineering educa-

tion research between the years 2005 – 2009 has 814 nodes (restricted by size of dataset). Future 

analyses with larger datasets may show a larger network emerging. This image was generated using 

Figure 8. Evolution of the keyword “engineering education” over a period of time. These 

types of graphs can be generated interactively and repeatedly using iKNEER.
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a software environment called UCINet (which is fairly complex for most users to utilize). However, 

the core dataset needed for this work was generated by iKNEER in a few seconds (a process that 

previously took months). We are building towards being able to generate these types of insights 

automatically and on-demand.

One of the key questions for any new discipline such as engineering education research is the 

question of capacity building and capability to propagate innovations. When looking at a network 

graph as shown in Figure 10, we ask the question – how is this network related to the larger com-

munity of engineering educators? Furthermore, is this network capable of propagating innovations? 

What does it mean that 814 researchers are connected in a single network? To showcase iKNEER’s 

capability to answer such questions – we undertook a network visualization of the community fos-

tered by the Frontiers in Education (FIE) conference. This effort used data from the proceedings 

of the FIE conference from 1991 to 2009 – a significant amount of data to analyze manually. The 

resulting visualization [35] showed that through the papers presented at the FIE conference, a larger 

community of researchers was being united into a powerful network. This network showed not only 

Figure 9. The largest network of authors within engineering education research from 

2005 - 2009. Nodes in blue are critical to the integrity of the network and show key 

contributors. Red nodes indicate collaborators attached to these key contributors.
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the characteristics that demonstrate significant capacity – but also the size of the largest network 

showed tremendous potential to propagate pedagogical and theoretical innovations. Key points in 

the growth of the network fostered by the FIE conference are shown in Figure 10.

BUILDING EPISTEMIC UNDERSTANDING – TOPIC MODELING TO IDENTIFY THE EMERGENCE 

AND GROWTH OF RESEARCH TOPICS IN ENGINEERING EDUCATION

To test the value and scope of the infrastructure beyond the visualizations and analysis tools we 

had already incorporated in the system, we developed a case study where we undertook a detailed 

epistemic analysis of the field. We use the term epistemic consistent with its normal usage – of 

relating to or involving knowledge [36]. Different scientific fields and disciplines develop their own 

epistemic cultures which shape what is considered knowledge and the nature of knowledge that is 

valued within the field, with implications for the needed digital infrastructure [37]. As we noted earlier, 

engineering education research has undergone significant changes over the past decade. There has 

been an increase in the number of scholars and practitioners involved in the field, particularly those 

that are applying rigorous research principles to advance understanding of engineering education. 

In this context, it is important to understand the topics, approaches, and ideas that have caught the 

imagination of people in the community. Therefore, one of the analyses undertaken in this paper is 

to apply topic modeling and associated techniques to chart the emergence and growth of research 

topics in engineering education research over 9 years, from 2000-2008. Since this nature of work 

Figure 10. The growth of the co-author network in FIE: snapshots of the network in (a) 

1991, (b) 2000, and (c) 2009.
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has not been done in relation to EER, a significant part of the effort described here is innovative 

and exploratory in nature where different techniques were tested with the goal to identify diversity 

of topics that are of interest to the community. 

As discussed earlier, although the roots of engineering education go back over a century, when 

Journal of Engineering Education published its first issue, in recent years there has been increased 

focus on improving the empirical foundations of the field. Numerous initiatives to develop the field 

have been created and implemented. Any maturing research field can reap significant advantages 

from a holistic understanding of its past and current efforts, particularly what topics found favor with 

researchers earlier, how they have changed, and what are some novel and recurring problems that 

need to be addressed. Yet, empirical efforts to do so at a smaller scale, such as through interviews 

and surveys, suffer from problems of bias, validity, and reliability. Recognizing the limitations of other 

approaches, one of the starting points for this research project was the question: How can we identify 

and study a research field over time, noting periods of gradual development, major ruptures, and most 

importantly the major topics that have been of interest to members of the field? 

Faced with this question, we decided to leverage emerging advances in the data mining and 

analytics techniques. In particular, our investigation of observing such insights is operated on the 

unsupervised topic modeling method, Latent Dirichlet Allocation (LDA) [38] that has also been 

implemented in iKNEER. As a comparison, we also extract the most meaningful noun phrases and 

keywords from documents for topic detection and topic trend analysis. These approaches have 

been applied to various scientific corpora such as Proceedings of the National Academy of Sciences 

(PNAS), CiteSeer (a computer and information science paper collection), Proceedings of Neural 

Information Processing Systems (NIPS), and others. This approach has shown great capabilities for 

capturing the dynamics of research. To analyze topics in engineering education we developed a 

corpus of more than 2,500 articles from two journals and one conference on engineering education: 

Journal of Engineering Education (JEE), International Journal of Engineering Education (IJEE), and 

Proceedings of Frontiers in Education (FIE). These publications cover most major research topics 

across engineering education. We are in the process of adding the Proceedings of Annual Confer-

ence of ASEE to the corpus as well but our preliminary analysis suggests that the topics remain the 

same with or without that data. 

RELATED WORK

There have been many studies of the dynamics of scientific research. Using LDA models to cap-

ture the trends of topics has become popular in recent years. Griffiths and Steyvers [39]  analyzed 
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the hot and cold topics of PNAS articles between 1991 and 2001 as a way of gaining insights into 

the dynamics of science. They presented a basic analysis based on the post-hoc examination of 

the estimated probability of a topic to a document produced by the LDA model. Hall et al. [40] 

applied a similar method to understand historical trends in the major conferences within Com-

putational Linguistics from 1978 to 2006. They also introduced a model of the diversity of ideas, 

topic entropy, which is able to show the topic diversities of difference conferences. Wang and 

McCallum [22] extended the original LDA model by directly incorporating topic changes over time. 

Their model parameterizes a continuous distribution over time associated with each topic. Their 

experiments on several real-world data sets showed the discovery of more salient topics that are 

clearly localized in time than the plain LDA model. Despite the popularity of using LDA family 

models for trend analysis, other methods based on noun phrases and keywords were proposed 

and proven to be effective. For example, Jo et al. [41] addressed the problem of detecting topic 

trends using the correlation between the distribution of n-gram noun phrases that represent top-

ics and the link distribution in the citation graph where the nodes are documents containing the 

phrases. Their approach is based on the intuition that if a phrase is relevant to a topic, the docu-

ments containing the phrase have denser connectivity than a random selection of documents. In 

another example, Mane and Börner [42] denoted topics as highly frequent words with a sudden 

increase in usage, a phenomenon called “burst”. Their major sources of these words came from 

keywords indexed by Institute for Scientific Information (ISI) and MEDLINE’s controlled vocabulary, 

also called MeSH terms. In order to determine the trends of keywords, top 10 most meaningful 

words were selected by domain experts. The frequency changes of these words over time were 

used to indicate the trends of each domain. 

METHODOLOGY

In this section, we describe the topic modeling technique that we used to analyze the research 

trends in engineering education. To perform the analysis we approached trends from different 

perspectives – topics, noun phrases and keywords. The system provides great flexibility in terms 

of selecting which data to analyze, including its context and time range. The data controller en-

ables the selection of input corpus and allows a combination of any journals and conferences. 

The context controller enables us to choose the context for topic analysis. It can either be the 

title, the abstract or keywords in a paper. The model controller allows us to choose from a variety 

of extraction approaches such as LDA, noun phrase extraction or keyword extraction. The time 

controller enables us to choose a time range to calculate topic trends. It can be either individual 
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years or individual months. The findings indicate that some topics have remained constant over 

the years but some topics, such as global issues and assessment, have seen significant interest 

in the past five years. 

Topic modeling

Topic modeling techniques such as the Latent Dirichlet Allocation model (LDA) [38], aim to 

identify semantic topics given a text corpus. LDA is a generative probabilistic model of a corpus. It 

assumes that documents in a corpus are generated as random mixtures over latent topics. Let us 

assume that there is a corpus with D documents that contain a mixture of multiple topics {z1, . . . , zT}.  

LDA specifies the following distribution over words within a document:

( ) ( | ) ( )
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where T is the number of topics. Let p(w | zj) = f ( j) refer to the multinomial distribution over words 

for topic zj and p(z) = q(d) be the multinomial distribution over topics for document d. The two sets 

of parameters, j ( j ) and q(d) , indicate which words are important for which topic and which topics 

are important for a particular document, respectively. Two symmetric Dirichlet distributions with 

hyper-parameters a and b are introduced to the estimation of q (d) and j ( j ), respectively, in order to 

achieve smoothed topic and word distributions. Smoothing is necessary to avoid zero probability 

assigned to words that do not appear in a training corpus. Those parameters are posterior prob-

abilities that cannot be assessed directly. The values of the hyper-parameters depend on number 

of topics T and vocabulary size. Steyvers suggests that a = 50/T and b = 0.01 should work well with 

many different text collections. However, we still need to determine the number of topics T in the 

corpus. Perplexity is commonly used in language modeling to test the fitness of a text model given 

a training corpus. A lower perplexity score indicates better generalization performance in new 

documents. Therefore, we can obtain the best approximation of the topic numbers for the data 

by minimizing the perplexity as: T arg
T
min {perplexity(Dtest/T)}. Therefore, we can learn the topic 

models using a subset of documents as training data and evaluate the perplexity using the rest of 

the documents as testing data: 
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Noun phrase extraction

Frequently occurred noun phrases can also capture the major semantic concepts from a cor-

pus. A noun phrase normally consists of a head noun and optionally a set of modifiers. It is an 
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 important grammatical unit of texts in many languages such as English, French, and Chinese. In 

natural language processing (NLP), there are two major noun phrase extraction methods, namely 

static parsing and machine learning. The static parsing method relies on a set of rules pre-defined 

by linguists. These rules are often described using finite state automation (FSA). However, the ef-

fectiveness of this method is strongly dependent on the accuracy and comprehensiveness of the 

rule set. On the other hand, machine learning methods aim to overcome the drawbacks of static 

parsing. They rely on various statistical learning techniques to identify important noun phrases by 

analyzing the part-of-speech (POS) tags of texts. Existing methods such as transformation-based 

method, memory-based method, maximum entropy, hidden Markov model, conditional random 

field, and support vector machine have been reported to be effective in noun phrase extraction. 

Existing studies show that there is not a single method that always performs better than others 

in different applications [43–45]. The NLP approach we applied uses conditional random field to 

extract noun phrases. 

Keyword extraction

Keyword extraction is straightforward. It simply tokenizes the text to individual words. After 

removing common stop words (i.e., “a”, “the”), corpus-specific stop words such as engineering and 

education (in this particular study) are removed. Finally, words are stemmed to their roots (e.g., 

“studied” to “studi”) so as to obtain an accurate vocabulary of the corpus. For example, a sentence 

“engineering education has recently undergone a resurgence and reorientation” would be repre-

sented by the following keyword tokens {recent, undergon, resurg, reorient}.

DESIGN AND IMPLEMENTATION

Based on the LDA topic modeling technique, we propose a topic trend analysis system that con-

sists of 4 modules (see Figure 11). The data controller allows the user to specify the scope of the 

input corpus by selecting a combination of journals and/or conferences. The context controller asks 

the user to specify information (title, keyword, or abstract) to be included in the corpus for each 

publication. The model controller enables to choose the models of extracting topics or concepts in 

the corpus. It can be either of topic modeling using LDA, noun phrase extraction or keyword extrac-

tion. The time controller enables to choose a time range to calculate topic trends. It can be either 

individual years or individual months. Through different selections, a mix of inputs can be obtained 

giving a view across time and based on different data corpuses. This mechanism ensures that user 

can apply different lenses on the data. 
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EXPERIMENT AND DATA ANALYSIS

Data preparation

We analyzed the topic trends using a corpus which consisted of articles published in Journal 

of Engineering Education (JEE) and International Journal of Engineering Education as well as the 

conference proceedings of Frontiers in Education (FIE). The corpus should cover major research 

topics in Engineering Education. Table 3 summarizes the scope of our corpus. 

LDA model estimation

We used an open source LDA package, namely GibbsLDA++ (see http://gibbslda.sourceforge.

net/), for our LDA model estimation. The package is a C++ implementation of LDA using Gibbs 

sampling technique for parameter estimation and inference. Gibbs sampling is a form of Markov 

Chain Monte Carlo, which is easy to implement and efficient when extracting a set of topics from 

a large corpus. It is a standard parameter estimation approach in LDA [46, 47]. For LDA param-

eter settings and Gibbs sampling experimental settings, we followed those suggested by [37]. We 

split the original corpus into 90% for training and 10% for testing. The LDA parameters were set as  

Data D V W Range

JEE, IJEE, FIE 2,645 7,768 203,453 2000-2008

Table 3: Data Corpus (D is the number of documents, V is the size of vocabulary, W is 

the total number of words).

Figure 11. Overview of Trend Analysis System.
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a = 50/T and b = 0.01. For Gibbs sampling, we chose to run 1,000 iterations for estimation and 50 

iterations for inference. As shown in Figure 12, the LDA model with approximately 60 topics achieved 

the optimal perplexity score. Therefore, we consider that our corpus mainly contains 60 topics. 

Topic trends

For illustration, we randomly selected 15 topics out of all 60 topics with top 10 words associated 

with each topic (see Table 4). We analyzed the trends of the 15 topics between 2000 and 2008. These 

trends are shown in Figure 13 & 14. The mean q values in the two figures measure the topic strength in 

each year. They are calculated based on the observed topic probabilities of each document belonging 

to each topic within a certain time frame such as a year. Following [38], we define topic strength as 

p̂ (z | y), the empirical probability that an arbitrary paper d written in year y is about topic z: 
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where C is the number of papers published in year y. 

Figure 12. The LDA model with 60 topics achieved the optimal perplexity score. 
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Topic ID (numbers do 
not represent ranking) Top 10 Words in Each Topic

0 Student perform academic study factor significant higher level examination success

1 Design process engineering build idea open support pattern incorporate hand

2 Global intern competition culture university country state unit institution paper

5 Learn instruct base effect strategy cognition evaluation think tradition understand

8 School science teacher high student active stem middle career math

12 Device digit application mobile system embed base present logic implement

15 Laboratory lab experiment robot virtual remote control equipment simulation hardware

20 Survey study response result percept relate question rate complete determine

34 Data analysis collect inform analyze quality quantity method generate develop

36 Control simulation electron matlab power circuit paper present operate require

40 Software develop platform paper source potential open provide formal tool

44 Skill community develop technic student profession compete leadership knowledge integrate

49 Method chemic transfer energy numer spreadsheet flow calculate heat fluid

51 Student retent college mentor program success academy freshman increase university

59 Project student design capston require involve senior experiment final manage

Table 4. Top 15 topics.

Figure 13. Topic trend of 15 topics between 2000 and 2008.
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Keyword trends

We extracted the top 20 keywords of the entire corpus in Table 5 and analyzed their frequency trends 

over the time. The keywords were calculated based on paper titles and abstracts. The trends of two 

representative keywords, “laboratori” and “undergradu”, are shown in Figures 15 and 16, respectively.

Noun phrase trends

We extracted the top 20 noun phrases of the entire corpus in Table 6 and analyzed their frequency 

trends over the time. The trends of two representative noun phrases, “engineering education” and 

“a case study”, are shown in Figures 17 and 18, respectively.

FINDINGS AND DISCUSSION

Topic trends

Overall, the findings from these analyses show that some topics remain constant over time 

whereas other topics become more popular – meaning, significantly more work is done on them 

Figure 14. Topic trends of 15 topics between 2000 and 2008.



SUMMER 2014 27 

ADVANCES IN ENGINEERING EDUCATION

Tools for large-scale data analytic examination of relational and  

epistemic networks in engineering education

Keyword Frequency Keyword Frequency

Learn 633 Project 252

Student 542 Assess 235

Teach 486 Model 234

Base 475 Approach 214

Design 469 Analysis 211

Laboratory 424 Study 211

Chemistry 384 Control 204

Experiment 336 Program 176

Develop 301 Simulate 158

Undergraduate 284 System 158

Table 5. Major Keywords and Their Frequency.

Figure 15. Frequency of Keyword “Laboratories”.

as compared to previous years – at certain time periods. For instance, since 2005 the topics global 

and international aspects of engineering education have seen a significant spike. This interest can 

partially be attributed to the discussion of international aspects of educating engineers in the NAE 

publications (Engineer of 2020 & Educating the Engineering of 2020) as well as the publication of 

The World is Flat by Thomas Friedman, which had a significant influence on science and  engineering 
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public policy in the United States. Of course, there are other factors at play that make a topic popular 

such as funding or uptake of a technology by the industry. The findings from the topic analysis also 

shed light on several methodological issues that emerged as the primary methods of interest to the 

community – experiments, case studies and survey-based studies. The results from the analysis also 

show that certain engineering related software and data analysis tools, such as MATLAB, are popular 

Figure 16. Frequency of Keyword “Undergraduate”. 

Noun Phrase Frequency Noun Phrase Frequency

students 161 synthesis 40

design  96 evaluation 39

development  93 technology 39

engineering education  92 the role 36

chemistry  64 the impact 32

assessment  56 the use 32

analysis  53 an experiment 31

engineers  48 course 31

a case study  47 research 31

matlab  41 science 31

Table 6. Noun Phrases and Their Frequency.
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topics given their use in engineering education. In terms of disciplinary areas, electronic and com-

munications engineering and chemical engineering were found to be common areas addressed by 

scholars. Efforts such as mentoring and community development were also frequently present in the 

list of topics. The use of technology in learning was another dominant area of research and several 

Figure 17. Frequency of Appearance of “Engineering Education”.

Figure 18. Frequency of Appearance of “A Case Study”.
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topics (across the analyses) related to technology were identified, such as, robotics and mobiles. Not 

surprisingly, another major topic was design, given the central role of design in engineering practice 

and engineering learning and cognition. Results from topic modeling also suggested that capstone 

projects and freshmen projects are an area of interest across the community. Professional skills such 

as leadership, communication, and teamwork were also part of list of topics that were of interest to 

a significant number of scholars. Finally, another topic common across all results was assessment. 

Potential concerns

One area of potential concern, from the perspective of knowledge generation, which emerges 

from the analysis of topics is the paucity of theoretical or analytical keywords in the data. For a grow-

ing and maturing field it is essential to develop mechanisms to accumulate a body of knowledge in 

a meaningful manner [48-53]. This body of knowledge can then serve as the basis for productive 

future research, which avoids the pitfalls of earlier efforts. For any academic discipline, particular a 

social science or interdisciplinary discipline such as engineering education research, a strong core 

of theoretical or analytical ideas can coalesce scholars to make meaningful contributions [49]. For 

instance, no psychological, sociological, or learning sciences theory was present as a keyword. Issues 

of concern such as student motivation or student identity were also absent from the list of topics. 

This finding is of significance as it alerts us to a gap between practice and theory and the still greater 

effort needed to develop a more cohesive scholarly agenda in the field. Given the applied nature of 

engineering education, a lack of theoretical focus is not entirely surprising.

Another area of concern that emerged from the analyses was the disproportionate attention 

to undergraduate education and a lack of attention to graduate education within the community. 

Graduate students, in addition to being students of engineering, are also highly involved in both 

engineering teaching and research. Furthermore, the number of graduate students and their involve-

ment in the engineering and engineering education community is steadily increasing. Therefore, 

more attention is needed to issues that focus on graduate engineering education. In a related issue, 

there was no mention of K-12 experiences either, which is also a growing area of interest within en-

gineering education. As the field continues to grow it has to look beyond undergraduate students 

and steps have to be taken to include graduates and also K-12 students in engineering education. 

These are potential growth areas. As we further develop our data corpus to make it more inclusive 

and diverse, we are likely to uncover other areas of interest and of concern to engineering educators. 

We do not aim to provide our analysis as prescriptions for the field but as outcomes or guid-

ance that can be generated through a system such as iKNEER. Overall, by using different ap-

proaches to topic modeling we were able to provide a more comprehensive representation of 

the field than that achievable by other approaches. We combined LDA, noun phrase extraction, 
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and keyword  extraction, and all three approaches provided a different lens on the data. We argue 

that for future work such a combined approach might be the ideal way to understand disciplin-

ary communities and their interests and ideas. We highlight some of the key areas of interest for 

the community over the past years and identify emerging patterns as well as highlight an area 

of concern – the lack of theoretical or analytical topics with which the community engages. We 

also found that interpreting the results occurs best when someone from the disciplinary field 

looks at the findings.

One major limitation of our work is the exclusion of non-U.S. publication outlets. Although the 

journal and conferences in the sample publish international work, their representation is quite lim-

ited, therefore skewing the results towards issues that more pertinent to the U.S. In future work, we 

are trying to balance the data by including data from European Journal of Engineering Education 

as well as proceedings from SEFI and REESE. This finding essentially led to us expanding the offer-

ing of data sources within iKNEER to capture a more international flavor in the data. The goal is to 

make the dataset as comprehensive and diverse as possible. A secondary concern with the analysis 

methods adopted here is the frequent occurrence and identification of generic topics such as “stu-

dents” or “learning.” We are cognizant of this issue but also believe that including such topics in 

the analysis and findings captures a more honest characterization of the field and present a diffuse 

but real representation of the ideas present in the field. 

CONCLUSION

In this paper, we describe the design and implementations of a data-intensive knowledge platform 

and show how the system– iKNEER – and data contained within the system can be used to develop a 

better understanding of engineering education research. iKNEER aims to document and present the 

evolution of engineering education research. We collect, index, and allow sense making of a large col-

lection of data through intuitive and user-friendly interfaces. We apply topic modeling techniques to the 

data to understand the emergence and growth of research topics within the community. Researchers, 

educators, and other stakeholders in the engineering education research community can visually iden-

tify potential collaborators, research patterns, topic trends, and highly related articles. iKNEER is also 

starting to provide unique insights about the topology of the networks within engineering education 

research. It shows that the content and knowledge that rests within the networks formed by researchers 

are the fundamental mechanisms through which practices and methods unique to the field of EER can 

propagate. We acknowledge that the insights derived from iKNEER are highly linked to the amount and 

quality of data we index and process. See http://youtu.be/etWIJ5ESKhU for a full illustration of iKNEER.
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